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A spectral method for the solution of the incompressible
Navier-Stokes equations in spherical-gap geometries is presented. The
method uses divergence-free vector expansions which inherently
satisfy the boundary conditions [1]. Basis and test functions are con-
structed from Chebyshev polynomials and vector spherical harmonics
(VSH) yielding a Petrov-Galerkin weighted-residual method that
produces spectral convergence. No rotational nor equatorial symmetry
of the flow field is implicitly imposed. The approach makes extensive
use of the convenient properties of the VSH which are presented in a
computationally suitable form whenever possible. The alias-iree
implementation of the method rests upon a standard, explicit-implicit
time-integration technique. A VSH-Chebyshev vector transform with
two “fast directions” is also developed and briefly presented. Several
test cases are used to validate the resulting initial-boundary-value code,
Axisymmetric, basic spherical Coustte flow computations are com-
pared with available numerical results while a three-dimensional spiral
Taylor-Gortler vortex flow simulation is tested against experimental
measurements. Very good agreement is found in all cases. © 1994
Acacemic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to present the development
and implementation of a specialized spectral method for the
simulation of viscous incompressible flows in spherical-gap
geometries. Such flows occur in the spacing between con-
centric spherical shells in differential rotation. Numerous
phenomena encountered in those flows are of fundamental
relevance to the understanding of global processes in
planctary atmospheres and in the core of rotating stars [2].
The study of spherical-gap flows is also of basic importance
in the field of hydrodynamic stability for it stands as a
natural generalization of its more simple and classical
analogues such as the plane and the circular Couette flows,
and the flow between rotating disks [3].

Our motivation for the development of a new
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Navier-Stokes solver comes primarily from the physical
studies aimed at, ie., investigations of the transition and
instability mechanisms in spherical Couette flows. From
experimental results, it is known that the first transition in
narrow-gap geometries involves spiraling Taylor-type vor-
tices (e.g., [4]) while that in large-gap geometries shows
traveling azimuthal waves of a complex structure [5]. For
moderate-gap spherical Couette flows, both experimental
and numerical studies agree that, although axisymmetric,
the transition process as well as some super-critical steady
solutions may be devoid of any form of equatorial symmetry
{6, 7]. Therefore, the need for a fully three-dimensional
method with no symmetry imposed is evident.

Among other requirements typical of transitional flow
simulations, spectral accuracy as well as computational
and memory efficiency were sought. In response to those
requirements, the approach of Leonard and Wray [17 has
been followed for the spatial discretization of the continuum
equations. This approach has been the basis for the success-
ful simulations of Leonard and Wray [1] for pipe flows,
Moser et al. [8] for straight and curved channels, Spalart er
al. [9,38] for boundary layer, mixing layer, and wake
flows, and Stanaway et al. [10] for axisymmetric vortex
rings. For the spherical geometry, the availability of Hill’s
Vector Spherical Harmonics [ 117 alleviates the problem of
two non-periodic directions by providing a natural, purely
orthogonal, complete set of vector functions for the two
angular directions (see also [39] for an alternative VSH
basis in the context of vector elliptic equations). The
threesome family of VSHs offers further attractive proper-
ties to be discussed below, e.g., analytical relations for the
Laplacian operator and uniform resolution.

A description of the geometry and the flow parameters
follows in Section 2. After a presentation of the foundations
of the method in Section 3, the vector functions developed
for the spherical and radial directions, as well as for the
treatment of the non-homogeneous boundary conditions,
are described in Section 4. Section 5 then discusses some
aspects pertaining to the implementation of the method: the
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time-integration scheme, the discrete transforms, the
treatment of the nonlinear term and aliasing error. Finally,
Section 6 presents some of the numerical tests that have
been performed to assert the validity and efficiency of the
methed.

2. DESCRIPTION AND PARAMETERS

A fixed cartesian system of coordinates (x, y, zJ is con-
sidered with the z-direction aligned with the axis of rotation
of the inner sphere and further positioned so that the axis of
rotation of the outer shell lies entirely in the x-z plane, as
depicted on Fig. 1. Introducing standard polar spherical
coordinates (#, 8, ¢) with radial, polar, and azimuthal direc-
tions and unit vectors (&,, &, &,), it is a simple matter to
determine the velocity boundary conditions on each sphere
(a=0x%):

0 &,
ﬁ(F=Rn 9$ ¢') = Qrﬁr 0 éﬂ
Sin # é¢
i(f=R,, 0, ¢)= (1)
0 €,
Q.R, —sin o, sin ¢ & |,
cos a, sin §—sina,cos fcos ¢ &,

where R,, R,, ,, and 2, are respectively the inner and
outer radius and angular velocity, while a,, is the polar angle

Z
£
Qp
"
s \ 2
" N
P 4 ¢
€r
‘:‘f "
4 =
3 3
4
t{{ & ;.‘t_\,, €8
k% 2
R b2 a

I3 7 X
B Y £
4 A 3
E o 3 k7

% s /

5 . o

4 —— =

‘M\ f
3
e,
N
T
e
= Stonn vz

FIG. 1. Sperical-gap flow geometry and coordinates. The Qaxis of
rotation is in the z-direction while the £2,-axis lies in the x-z plane with a
polar angle a,.
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(O-direction) between the vertical z-direction (also the
§2.-axis) and the @ ,-axis. The bar superscript *“~” is used
kere to identify dimensional quantities.

One notes that while the velocity on the inner sphere can
only be azimuthal, the velocity on the outer shell always
involves both polar and azimuthal components except for
the particular case of spherical Couette flows for which the
two axes coincide, and therefore «, = 0. In addition, for the
sake of generality, on¢ also allows for €,, 2, and o, to be
arbitrary, known functions of time, It will be convenient for
future reference to define the following quantities:

d=R,—R;  gap width,

d=d/R; relative gap size, 2)
V.=Q.R, inner-wall speed,
V,=Q,R, outer-wall speed.

In order to express all physical variables in dimensionless
form, a reference length (L, =d) and reference velocity
(V. =V, or V, according to the specific problem) are
chosen. If time-dependent boundary conditions are used,
the maximum value of ¥, or ¥, would be chosen. The
Reynolds number is Re= V' L, /7.

In summary, for the most general case, one needs to
specify five parameters to completely define the problem:
one geometric parameter “4,” one equation parameter “Re,”
and three time-dependent boundary parameters “a,(f)” and

dimensionless “¥;(:y" and "V {r).”

3. WEIGHTED-RESIDUAL METHOD

The dimensionless Navier-Stokes equations for incom-
pressible flow consist of the momentum equation

du L

—+4u-Vu=— V2
g TuVu=—VripVon S
and the continuity constraint
V.ou=0. (4)

Using the identity u-Vu=V(juj*2}—uxw, Eq.(3) is
rewritten

(5)

]

du 1
—=-VP+—V%u+F,
3t T Re

where P=p+ |ul%/2, and F =u x @. Here, u is the velocity
vector, =V xu is the vorticity vector, and p is the

kinematic pressure. The Navier-Stokes equation (3} is
posed here as a nonlinearly forced Stokes problem.
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In all spectral methods, the dependent variables are
expressed in terms of a linear combination of known,
smooth, giobal functions referred to as basis functions, while
the momentum equation is satisfied in a weighted-residual
or integral sense. Different choices of weight functions,
referred to as test functions, correspond to different types of
method (e.g., [12])}. The first step of development consists
in taking the dot product of Eq.(5) with specified test
vector-functions '¥; and integrating over the whole domain,
ie.,

<‘pj, %—‘:> — (¥, VPY+ ﬁlg CF, V2> + (¥, F) (6)
where {a, b) stands for the integral over the volume of the
flow of the dot product of the vectors a and b,

With the identity ¥,-VP =V - (P¥,)— P(V-¥,) and the
divergence theorem, the first term on the right-hand side of
Eq. (6) is now written as

(¥, VPy = LP(‘I’jvn)dS - jyp(v-vj)dV, (7)

where V stands for the volume of the domain while S stands
for its surface with unit, outward normal vector m. This form
makes it clear that if the test functions ¥, are divergence-
free,

V.¥,=0, (8)
and if they satisfy the no-through flow condition on the
solid boundaries, Le.,

¥, . n=0, (9)
then (¥;, VP becomes identically zero.

This result is of fundamental importance in the present
numerical method. Plainly, it says that if both conditions
(8) and (9) are satisfied by an appropriate choice of the test
functions, then the pressure term altogether “drops out.”
The resulting working equation therefore becomes

aw\ L 5 _
<‘I’j,5[—> =~ Re (¥, Viuy + (¥, F), (10}

. where the multidimensional index j varies over the same
index-space as the spectral expansions to be introduced in
the next section.

4. VECTOR EXPANSIONS

In the method described in this paper, we follow Leonard
and Wray [1] and represent the incompressible velocity
field using divergence-free vector expansions which are
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made to satisfy all the boundary and geometry conditicns:
no-slip on the walls, periodicity in the ¢-direction and
regularity at the poles. This is accomplished first by decom-
posing the velocity field into two solenoidal components
such that

u=u,+u,, (11}
where u, is a contribution that satisfies homogeneous
boundary conditions {zero velocity) on the r=R; and R,
walls, while u,, is one that satisfies the actual boundary con-
ditions on those walls, The latter can be viewed as a known
divergence-free vector function easily constructed as shall be
presented separately in Section 4.3. Therefore, one needs
only focus at this stage on the construction of velocity
expansions for u, that span the whole homogeneous sub-
space of the divergence-free vector space in the spherical
gap. Note that for brevity the subscript “A” is mostly
omitted below.

In addition to the constraints already mentioned on our
vector expansions, numerical efficiency requires that they
also form complete sets as tightly “quasi-orthogonal” as
possible. In all three-dimensional applications of the
method so far, one has considered two periodic directions
(purely orthogonal Fourier expansions) and one non-
homogeneous direction (quasi-orthogonal expansions
which yield banded topology for the uncoupled systems of
discrete equations). For three-dimensional flows in
spherical geometries, there are of course two non-periodic
directions (r and 8). Stanaway et al. [10], who used a
divergence-free expansion method to compute unbounded,
spherically axisymmetric flows, have proposed in [13] that
three-dimensional expansions based on vector spherical
harmonics, VSH, may be employed effectively to alleviate
the problem. We follow that lead in the construction of our
own expansions below.

4.1. Spherical Directions

The directions 8 and ¢, taken together, define a two-
dimensional surface corresponding to a spherical shell. On
that surface, the family of three VSHs (see [11] and
Appendix A) forms a complete set of orthonormal vector
functions and can therefore be used to expand any arbitrary
3D vector field. In general,

H..?r’n(r’ t) X!,m(gs ¢)
+ H;r/n(re t) v!‘m(ga ¢) +
- +H!l:(r’ I)wf,m(g-t ¢)

=] i
u(r, 0,6, 0)= 3%, % (12)
=0 m=

where X, ,,, ¥, ,,, and W, are the three independent vector
harmenics which satisfy the orthogonality relation

2n am
[ Con [Dy1*5in 00 dp = 805610, (13)
0 0
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where * denotes the complex conjugate, and the vectors C
and D are any of X, ,,, V,,,,, or W, . Using Eq. (13), one
casily obtains explicit expressions for any of the complex-
valued coefficient functions in (12), for example,

) = [ [l 0.6.0)-X2,(0. 6)sin 0 d0 dg. (14)
o 4

It can be shown that the truncated version of expansion {12)
exhibits spectral convergence as long as the vector field is
infinitely differentiable. In addition to this spectral behavior
and the crucial orthogonality in both ¢ and ¢, the VSHs
offer uniform resohition over the whole spherical surface,
thus avoiding™ the stringent timestepping stability limit
associated with the azimuthal clustering of the collocation
grid near the poles [ 14]. Some fundamental results and use-
ful properties of the VSHs, and of the SSHs (scalar spherical
harmenics) from which they are built, are provided in
Appendix A.

A divergence-free vector fleld can be represented using
only two independent sets of basis vectors as

u(r, 8, ¢, t)= Z Z

=0 m=—|{

{H.,;,,(i", I) Xn’,m(g': ¢)+ }
V X [H;n(r!‘ E) Xf.m(BQ ¢)] i
(13)

where a finite truncation “L” has been introduced. Equa-
tion (13) is simply the divergence-free subspace version of
the general expansion (12). Using the result (A.17), one
obtains the following relations between the H ,, functions of
those two expansions:

Hy(r,1)=

D NTeHA )
a0 =i(5) | L] a6)

A UNPTaH () 141
Hﬂ&r}:(ﬂ+1) [ ’& +— H;qu.

Hofr 1)

Leaving the radial functions arbitrary for now in a discrete
space truncated at *N,” the time and radial dependences are
separated as
v
Hi(rt) = } a

n=0

m'm(r) h (
(17)

H,(r 1} hi{r)

]

N
2 @l
n=0

No index / nor m is needed for the #* functions above due
to their common homogeneous boundary conditions, ie.,
each of the radial functions in a given class must lead to the
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same zero end-conditions irrespective of / and m. In terms of
the general expansion (12}, one thus has

N
Hirt)y = ¥ ah.(0) hi¥(r)

n=A1

(18)
N
H;:r:(r! t) = Z nim ’) h:.'w(r)!
where, from (16),
I \NY"Tdhr 1

+ ¥V - — o+

B (1) ’(y+1) [tﬁ rh"]
(19)

I+ I\ Tdhy 141
h+W = | ——— —
() JQHJ) [m r h]

For the time-independent test functions, onc similarly
chooses two distinct classes of vectors that together span the
whole divergence-free space on a sphere of radius r (thus
satisfying exactly constraint (8), the first fundamental
condition on ¥)), i,

n!m(r 9 ¢) -

¥ Ar, 0, 9)

g, (1) XE (6, ¢)
m’(ey ¢}]

(20)

it

Vxlgi(r) X}

where 0<n' <N, 0<I'< L, and |m’'| €', Here, the com-
plex conjugate of X, , is introduced purely for convenience.
Using again Eq.(A.17), the “*” class of test functions is
rewritten as

‘P:fm '-gnf (r)V (B! ¢’}+ g:ﬁl”v(r) W?E,m'(87 ¢)’ (21)
where
l: 172 dg-{‘— l.ﬁ
+V — i o0 gt
g0 = ~i(zp) | % -Ter |
(22}
. 11+1 172 ﬁﬁ_f"{“l .
gn.’ (r) - ! 2l.~+l ar r gn' )

One now proceeds to evaluate the spherical contributions
in the integrals forming the weighted-residual equation (10).
The task is made quite simple by the uncoupling of the ~
and * classes of functions due to the orthogonality property
(14) and by the simple relations of (A.18) for the Laplacian
operator. Substituting in the velocity expansion (15) and
cach of the functions (20) and (21) for ¥,, one obtains for
every modal pair (/, m) two uncoupled systems of “N + 17
ODE:s for the unknown coefficients a2, :



DIVERGENCE-FREE SPECTRAL METHOD FOR SPHERICAL FLOW

N da= Ry 1 R, _
)3 {”‘;TM_[R hy 8o r dr_R_ea””’”’L ﬂ(h;)gn.rzdr}
n=0 i ¥

- ["rwerra (23)

for the ~ class, and

N
E {darﬁmJ'R"(h+VgJ\CV+h+Wg+:W)r2dr_
o dt R nl wi nl ni

n= 1

—at

Ro
R, LB 3V 630+ 51 () 8217 o)

R,
= | U me v e e (24)

for the * class. In these relations, the index »’ takes all
integer values on [0, ¥V], and the scalar differential operator
%, is defined in (A.19) as d*/dr® + (2/r){djdr) — (I + 1)/r.
The radial functions f*"¥(r) are respectively the X, V
and W components of the VSH transform (discussed in
Section 5) of the nonlinear forcing vector F=zuxw=
(u, +u,.) x {0, + ).

4.2. Radial Direction

The finite dimensionless interval R, < r £ R, is
first mapped into the standard domam —1 € £ < 1 by
&(r)=2r— K, where the new geometric parameter K,
redundant with & but nonetheless usefui, is given by K=
(24 8)/8 = R, + R,. Chebyshev polynomials 7,(&) are then
chosen to construct the radial functions. They are defined
within the interval —1 £ < | on which they satisfy the
orthogonality relation

| @ T T & = Fe,0mm,

(25)
where w(&) = (1 — £*)~ ' is the weight function, ¢, = 2, and
c,=1forn=0.

Using the results of Appendix A and the velocity
expansions defined by (12) and {15) to (19), it is easy to
verify that the radial basis functions 4 (r) and 4] (r) must
satisfy the following end-conditions in order to enforce
the homogenecous, no-slip boundary conditiens, ie.,
wr=R) = uwr=R) = O:

ho(R) = b (R,) = 0,
(26)

d d
= S hi(R) = —hI(R) = 0.

hY(R;
v (R) dr d

[l

The question of end-conditions for the radial test functions
g-(r}and g} (r), introduced in (20) to (22), is somewhat
more delicate. This is due to the necessary inclusion of the
singular Chebyshev weight function w(&)=(1—¢&*)~ '~

209

within the test functions in order to take advantage of the
orthogonality property (25) in the evaluation of the
weighted residual integrals (23} and (24).

The basic condition (9) on the test vector-space states
that it must {at least) satisfy the “no-through flow” condi-
tion. A more precise definition of the space is, however,
available from the theoretical analysis of Pasquarelli et al.
[16] who studied Leonard and Wray's method applied in
conjunction with Chebyshev polynomials. By considering
the numerical procedure as being a projection method with
respect to the Chebyshev-weighted L2 inner-product space,
they have specialized the projection argument of Moser and
Moin [8] and have shown that, in addition to conditions
(8) and (9) on ¥,, the vector space “¥;/w” should also
satisfy the no-slip condition (similarly to the basis vector
space), L.e.,

¥ /w =0

r=Ri. R,

(27}

The proofs of stability and convergence given by Pasquarelli
et al. are important contributions in that they have provided
the additional and formal support required to complement
the prior evidence from numerical experiments [17].
Applying condition {27) on the test vectors given by (20)
to (22), yields similar boundary conditions for the test
functions “g*/w™ as the ones written in (26) for the basis
functions. We are thus specifically interested here in single-
zerg and double-zero tadial spaces. Such subspaces can be
formed systematically by a space restrictor approach, i.e.,

{subspace set} = {space restrictor } x {general set },

where the product of the space restrictor with the general set
must lead to a polynomial representation. One must there-
fore choose a polynomial function for the space restrictor. It
is no challenge to convince oneself that (1 —¢?) for the
single-zeto restrictor, and (1 —¢&2)° for the double-zero
restrictor, are the lowest order polynomials to enforce
exactly the appropriate restrictions. The interested reader
may consult [ 18] for an alternative, more general method
of generating any subspaces (the [linear combination
approach). Our radial basis functions are thus constructed
here as

(1=&*) T,(&)
(1 =&r T,(&) -

h, (r(S)) =

(28
o (r(€)) !

from which, by Eq. (19), the " class decomposes as
! )”2{(1 ) [(1=¢&y T,,(é)]+}
20+1 (§+K) [(1 =8 TAOHT

h+Wr)—i(—l+1 ‘”{(2+!) [(1—¢%)? T,,(a:)1+}
S 21+1) (E+K) [(1 P T §°

HY V(r)=i(

(29)
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where the superscript ' on bracketed terms indicates

derivative with respect to . Note that the presence of the

factor r in the A} function is necessary to yield an exact

polynomial representation for the radial expansions in (29).
The radial test functions, which must include the

Chebyshev weight function, are obtained similarly, i.c.,

_ 1
g (H&)) = m(l“"fz) T.(¢)
_ ( (30)
8308 = g (1= 87 Q)
For the * class, this translates by Eq. (22) into
i . ! 1/2 1
g (r) = -—I(ZH_I) (-~
(10 [(1=8 T.(&)]
X< +EE+HK) [(1=E)T()]
+(E+K) [(1=8) T,()T
. ) l+1 1/2 1
g () = —‘(21+1) (1— 57
(1+2) (1 =& T()] '
x4 +EE+K) [(1-E) T,(0)] (31)

+H{E+K) L1 Th(6)T

It can be verified that both the basis and the test functions
above form complete sets of quasi-orthogonal functions in
the appropriate subspaces. Indeed, through extensive use
of the Chebyshev orthogonality property, they permit
a straightforward evaluation of the weighted-residual
integrals (23) and (24). This results in non-symmetrical
matrices with regular and thinly banded topologies. Those
matrices are synthesized in Appendix B and can be easily
constructed. The half-bandwidths of the inertia matrices
o~ and &/ are 6 and 10 while those of the viscous
matrices #~ and #* are 4 and 8.

4.3. Boundary-Condition Terms

In this section, the boundary condition part of the
velocity decomposition (11) is chosen, and its contribution
to the weighted-residual equation (10) is discussed. It is
recalled that w,, must be a divergence-free vector field that
satisfies the solid-body rotation conditions on the two walls,
ie., Eq. (1). '

It can be verified (e.g., Appendix B of [11]) that the
vector spherical harmonic X, ,, with /=1 and |m| <1,
provides exactly the right 8-¢ functional form to describe
solid-body rotation of spherical shells with respect to
arbitrary axis, i.e.,

“solid(es ¢) = (Kl sin ¢) é@ +

(Kysin 8+ K, cosfcos ¢) &,, (32)
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where K, and K are constants. Therefore, it only remains to
choose a radial function to build the u,, field. The simplest
and most convenient choice is clearly a linear variation. One
thus writes

Introducing the actual (possibly time-dependent) boundary
conditions (1) and expressing the result in terms of
Chebyshev polynomials, one obtains the desired non-
homogeneous velocity expansion

ubr(r(f): 0: ¢’ t) =

i

> [/131(1) To(&) +A,,(1) Tl(é)]Xl,m(H,fﬁ), (34)
m=—1

where the known, dimensionless boundary parameters are
given by

1/2
A1) = —i(?ﬁ) [Vo{t) cos (a‘,(t)) + V,-(t)]

AN = —i(z?”)m [Va(:) cos (ao(t)) — V,-(t)] (35)

A% = J_ri(-g)m V(1) sin (ao(t))-

[

The contribution of the non-homogeneous field into the
weighted-residual equation is now easily determined.
Thanks to the VSH orthogonality property, the only non-
zero contributions come from the dot products with the —
class of test functions (20) when /=1. One finds for the
inertia and the viscous term respectively

(o} =]7 [0 1o+ a0 1o | e 0 an
m . (36)
{V*’f(:)} =2[KA,L(r)—A?,,(r)] [" gy a,
m Ri

where the dot superscript indicates derivative with respect to
time. In the above results, m takes the three values —1, 0,
and 1, #' ranges from 0 to N, and Ty and T, are respectively
the zeroth and first-degree Chebyshev polynomials (T, =1,
T, =£&). Using again the Chebyshev orthogonality property
(25), it is straightforward to evaluate those radial integrals
and thus to construct the necessary 7% and V% one-dimen-
sional arrays of size N + 1 {in which most of the components
are zero ). These arrays are then added appropriately to the
“I=1" system of ODEs of the ~ class.
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A convenient summary of the present spatial discretiza-
tion, including the complete expression for the velocity
expansion and the matrix form of the semi-discrete systems
of equations, is presented in Appendix B.

3, IMPLEMENTATION

5.1. Time-Integration

Simple, standard time-marching procedures can be used
to integrate the systems of ODEs for the unknown expan-
sion coefficients. The classical aigorithm adopted here
consists of a mixed (explicit-implicit) finite-difference-type
method. The viscous term is treated implicitly by the
second-order Crank-Nicolson scheme. Since inversion of
the inertia matrix o in Eq. (B.2) is clearly unavoidable,
and since ./ has a larger bandwidth than £, the implicit
treatment of the viscous term comes at no extra cost.

The remaining terms, the nonlinear convection and the
boundary-condition terms, are all integrated by the explicit,
single-step, second-order Adams-Bashforth scheme. For
each pair (I, m), the systems of ODEs (B.2) thus become the
discrete systems written symbolically as

A! i+1
oAt gz * —
[ —sge® | {er}

At I 34 At J-1
+ + + 2l lgtl g
[0 4age Jlo | + 5 o) -3 )

(37)

with the superscript j as index for the timesteps, and

- 1 -
@+Ey+, %75 -af_ﬁ_Tbc 5"']+R_e Vbc (5;,1. (38)

This time-integration scheme is globally second-order
accurate and conditionally stable. A CFL number of 0.50 to
0.70, based on loca!l velocities and the transform collocation
grid, ensured numerical stability and accuracy. It is impor-
tant to note that the actual clustering of the azimuthal
collocation points towards the poles (4¢ ~ sin #) does not
have 1o be taken into account in the CFL definition due to
the uniform reselution of the spherical harmonics over the
whole sphere [187]. This property allows for reasonable
timestep sizes to be used and represents a fundamental
advantage of the VSHs over alternative choices of
expansions [14].

The matrices involved in the discrete systems (37) are all
real and independent of the index m. For a given /, the band-
structured equations are constructed from pre-computed
(+independent) basic matrices and are solved by classical
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Gauss elimination with up to M + 1 complex, m-dependent
right-hand sides where M </ (see [18]). Furthermore, only
the spectral coefficients with m 2= 0 are actually integrated in
time. The remaining coefficients are automatically deter-
mined with a%, _,,=(-1)"*'[aZ,,]1* which must hold
due to the indicial symmetries of the VSHs and the reality
of the velocity field u.

5.2. Discrete Transforms

As presented so far, the complete set of VSHs up to degree
L (0 < |m| <1< L) has been considered. However, one can
restrict the maximum order of the VSH expansions to a
smaller value than L, say M, such as in the case of axisym-
metric {lows where M = 0. In general, one thus implements
the velocity expansion (B.1) as

N M L - —

A ritm hn Xf.m+ }

u =
Hgo m=z‘:M I=Z|mg {a):;mvx [h: X-"m]

1

+ X

m= —1

(0 To+ 4, 711X, (39)

where M < L. That form makes it clear that the three trun-
cation parameters N, M, and L can be chosen separately
and optimaily to achieve a desired level of resolution.

The efficient implementation of the present numericat
method requires back and forth transforms of the unknowns
between spectral and physical spaces (see Section 5.3).
This capability rests upon the existence of a discrete
VSH-Chebyshev transform associated with the stan-
dardized, generic V.SH-Chebyshev expansion

a (r(c), 6, ¢) -

Ng My _ Ly AnImXLm(B) =
Z Tn(é) Z ermtj Z + Bn!m Vim(ﬂ)
=0 m=Ma =N 4 Copn Woml(0)

(40)

in which the § — ¢ functional contributions of the VSHs
have been separated thanks to (A.12): the polar vectors
X, 0), ¥V, .(8)and W, (0) (defined in Appendix A)for the
polar variable 8, and the Fourier complex exponential ¢
for the azimuthal variable ¢. Recall that the restriction
M ;< L, always applies. It is thus clear that the three-
dimensional vector transform corresponding to {40) can be
petformed as a sequence of one-dimensional transforms
where only the polar direction involves vector functions.
Standard Fourier transforms of size 2M ;+ 2 and standard
Chebyshev transforms of size N, are used in the azimuthal
and radial direction, respectively. Both of these are fast
algorithms implemented with FFTs on the collocation grids
given by ¢,=jr/(M,+1) for j=0,1,.,2M,+1 in the
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azimuthal direction, and &, =cos(jn/N,) for j=0,1, .., N,
in the mapped radial direction.

It is shown in [ 18] that, for the polar direction, a discrete
backward transform based on Gauss—Legendre quadrature
can be developed and be exact in the discrete space despite
the polar vectors not being, in general, polynomials them-
selves, The L, + 2 collocation points used correspond to the
zeroes of the Legendre polynomial P, ,(u) with g, = cos 8,
and are almost uniformly distributed along the polar
domain 0 < 6 < n. The polar vectors transforms (backward
and forward) are thus “slow transforms” (O(LJ)
operations) yielding a total operation-count for the
whole VSH-Chebyshev transforms that scales as
O{N LM, L;+2log(M,N,)]}. To achieve full vec-
torization of the transforms in the polar direction, it is
necessary to pre-compute the polar vectors X, .., ¥, ., and
W,,. (total of eight components computed from associated
Legendre functions by standard recurrence routines) at the
@, collocation points, thus requiring 4(L,+2)(M,+1)
(2L,— M, + 2) real words of memory e.g., L,=129 and
M, =31 - 3.8 MWords.

5.3. Nonlinear Terms and Aliasing

The nonlinear terms # % in the discrete systems (B.2)
result from the inner products {*¥;, u x ®>. Their computa-
tions use a standard collocation approach, i.e., the product
F =u x @ is handled in physical space rather than through
a convolution sum in spectral space. At ecach timestep,
generic VSH-Chebyshev representations (e.g., Eq. (40) for
the velocity) of both the velocity and the vorticity vectors
are obtained from the basic velocity expansion (39). Using
common properties of the VSH and Chebyshev polyno-
mials, this first step is efficiently implemented through
multiplications of real, pre-computed, banded matrices by
complex vectors. The generic expansion coefficients of both
vector fields are then forward transformed into physical
space where the vector product is computed at each node of
the collocation grid. For convenience, one computes the
product “r(ux re)” rather than simply F. By a backward
transform of the resulting vector field, one obtains the
expansion coefficients corresponding to the generic
VSH-Chebyshev representation of the nonlinear product.
The final step involves again banded matrix—vector multi-
plications for the evaluation of radial integrals and produces
the desired nonlinear terms % *.

It can be shown that the inner product (¥, uxw) is
evaluated exactly, i.e., without aliasing error, if the trunca-
tion limits M, L, and N, are set according to the so-called
“3/2-rule” [18]:

N, = 3(N+4)+1
M, = iM+1 (41)
Ly, = 3(L+1)+1.
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For all the numerical simulations in this study, the above
collocation truncations are used. The method can thus bhe
said to be totally de-aliased in the discrete VSH-Chebyshey
space truncated at M, L, and N + 4.

6. NUMERICAL TESTS

This section presents a few of the tests performed in order
to validate the spectral code which implements the numeri-
cal approach described in the previous sections. One may
refer to the thesis by Dumas [ 18] for a complete and more
detailed exposition.

We restrict the present discussion to test - problems
belonging to the general category of “spherical Couette
flows” with steady-state boundary conditions and with both
axes of rotation aligned with the wvertical z-direction
{2,=0). We further restrict the presentation to cases for
which either the inner or the outer sphere is heid stationary.
The number of relevant parameters thus reduces to only
two: the gap-width ratio {(§ = d/R, = 1/R,) and the Reynolds
number (Re = Fd/v, where V=¥, or ¥,). Both axisym-
metric and fully three-dimensional flows are computed and
are compared with existing experimental and numerical
results.

6.1. Axisymmetric Flows

Basic spherical Couette flows are axisymmetric and in the
limit Re — 0, the Stokes solution is known as

Usiores = (cxr-i—;ﬁi) sin@ &, (42)

where « and ff are constants that depend on the boundary
conditions and the gap size. This solution is obviously
axisymmetric and exclusively azimuthal in direction (no
meridional velocity, ie., u,, = 0). The corresponding angular
velocity (2 =wu,/rsin 0) is not a function of ¢ so that the
is0-2 contours are all concentric spherical shells.

For any non-vanishing Re, however, nonlinear effects
always lead to the generation of a meridional circulation.
This can be verified by a simple analysis of the nonlingar
interaction of the Stokes flow with itself (e.g., [22]) in
accordance with the Ekman pumping phenomenon taking
place near the rotating surface in the pole region. The
laminar, subcritical regime in spherical Couette flow is thus
the combination of a primary azimuthal motion and a
secondary meridional circulation which strongly depends
on Re and d (e.g., [5]).

We consider first the basic steady-state flow in a large-gap
geometry =10 (R,=1, R,=2) with a stationary inner
sphere and a rotating outer shell. The truncation limits are
set to N=16, L =42, and M =), yielding a timing of 0.22
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F1G. 2. Meridional streamlines ¥ and angular velocity contours £
of the steady-state axisymmetric solutions at Re =V div {a) 50 { ¥ =
0.0144), and (b) 500 (¥4, =0.00737) with =10, V,=0, and ¥V,=1.
Solutions are reflection-symmetric about the equator. The circumferential
distance between the tick marks on the outer sphere corresponds to the
gap-width J.

CPU-s/timestep on a single processor of the CRAY Y/MP.
Several Reynolds number flows from zero to 500 have been
computed. Figure 2 shows two such computed flow fields by
means of contour-piots of the meridional streamfunction ¥
(u,,=Vx [(¥/rsing)&,])and the angular velocity Q. The
solution being (freely) reflection-symmetric about the
equator, only the upper half of the domain is shown.

It is observed that even at a Reynolds number as low as
50, the meridional recirculation (positive and therefore
clockwise in the upper hemisphere) has developed strongly
enough to significantly affect the distribution of angular
momentum between the spheres, as shown by Fig, 2a, where
the departure from the Stokes solution is clearly visible.
With increasing Re, the secondary flow intensity increases

TABLE 1

Comparison of Dimensionless Torque T

Investigator Torque 7
Present 16.702
Gagliardi et al, [30] 16.29
Yang [28} 16.72
Dennis and Quartapelie {271 10.99
Dennis and Singh [31] 16.76
Munson and Joseph [24] 16.65

Note. Re=50,5=10, V;=0,¥,=1.
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and the center of the recirculation celi moves closer to the
inner sphere while confining itself within a cylindrical
envelope of radius approaching R;. Outside that envelope,
there exists a region of essentially constant angular velocity
( = Q,)as well as a very weak counter-circulation cell near
the equator (not visible, however, on the constant-
increment ¥-contours of Fig. 2b),

Over the past two decades, a number of researchers have
reported numerical results for that same problem using
either finite difference or perturbation methods which
explicitly assumed axisymmetry as well as reflection-
symmetry about the equator [23-307. A comparison of our
flow solations (c.g., location and magnitude of ¥, ) with
the ensemble of those results showed good agreement
as detailed in [18]. TableI provides a quantitative
comparison for Re =750 of the steady-state dimensionless
torque ¥ as given by

3 ! du, u
¥ = —— = 2| sin@| =2——2|du (4
P nr I-lsm [ar r:[ (43}

with ¢ = cos 8, and where the integral is evaluated at r = R,
to get the inner torque Y, or at r = R, for the outer torque
Y,, both of which being equal for truly steady-state
solutions. For our computations, the time integration was
pursued until the relative difference between the two was
less than 10~°. We believe that our result is accurate to the
five digits shown. Other investigators’ results have been
appropriately standardized according to (43) and are given
here with the provided accuracy. Furthermore, when both
inner and outer torques were available (and found dif-
ferent), the average torque was selected. We add for
reference two more of our computed results: Y(Stokes) =
14.362 and Y{Re = 500)=28.896.

Our second set of benchmark cases consists in spherical
Couette flows occurring in a moderate gap § = 0.18 with a
rotating inner sphere and a stationary outer shell (V,=1,
V,=0). An abundant experimental, theoretical, and
numerical literature exists on this basic flow and its axisym-
metric transition states which are often referred to as
“spherical Taylor—Couette flows” (eg., [3,7,32,33]) Ina
significant two-part paper [6], Marcus and Tuckerman
have described and used an axisymmetric, pseudospectral
method for the study of those flows. With our spectral
code, two of their high-resolution simulations (16
Chebyshev x 128 sine functions) have been very well
reproduced with similar truncations: {1) a steady-state,
subcritical zerp-vortex flow with pinches, and (2) a time-
evolving flow corresponding to the so-called 02
transition. Results for the former are discussed below while
the latter are presented in [18] and are used in [22] for a
discussion on the transition mechanism involved which is
shown to be a deterministic process independent of a
centrifugal instabiiity.
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FIG. 3. Steady-state axisymmetric solution at Re= V,djv=117 for
§=0.18, V;=1,and ¥,= 0. Shown from left to right are the contours of the
streamfunction ¥, the angular velocity £, and the azimuthal vorticity e,,.
For clarity, the radial direction on the contour plots has been amplified
four times. Full and dashed lines represent respectively positive and
negative contour values.

Using the truncations N=16 and L =84 (N, =32,
L,=129), the steady axisymmetric flow at Re =117, ie,
just below the critical value for the onset of Taylor vortices,
was computed. Figure 3 and Fig. 4 show respectively the
flow field via contours of ¥, @, and w4 (azimuthal vorticity
component), and the energy spectra E (/) and E,,(/). Both
figures can be compared directly with Figs. 7 to 9 of Marcus
and Tuckerman {6]. The energy spectra of Fig. 4 are easily
computed from the definition of the total kinetic energy of
the flow per unit volume, ie., E=(1/2v) [, u-u* dv, where
v=4n({R>— R})/3 and dv = r’drsin 6 df dp, and the fact

——s———— Azimuthal energy
-——s-—— Meridional energy .I
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FIG. 4. Azimuthal and meridional energy spectra E,(/) and E,(]) for
the flow field of Fig. 3.
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that the velocity expansion ({12) reduces for axisymmetric
flows to an azimuthal component plus a meridional vector:

5 A,(r) X, 4(0)

I=1

uy(r,0)e;, =
- (44)
Z B,(r)V,4(0)+ Ci(r) W,(8).

i=t

u,(r, )

It is therefore straightforward to decompose the total
kinetic energy of such flows into azimuthal and meridional
contributions such that E=E;+E,, and where the
azimuthal spectrum is given by

L L 1 R 2
E, = YE() = ¥ - %rzdr

=1 =1 VR

(45)

while the meridional spectrum simply reads

L 3 2 2
D=5 lj [M] P dr. (46)
=1 =1 YR 2

For reflection-symmetric flows about the equator, contribu-
tions to E (/) come only from the / = odd modes while those
to E,,(I) come solely [rom the /= even modes as can be seen
on the spectra of Fig. 4.

The agreement between our computed solution and
Marcus and Tuckerman’s is found to be quite good in all
respects considered, e.g., qualitative features of the flow field
and locations of the critical points undistinguishable (two
centers and one saddle per hemisphere), friction torques in
agreement better than provided accuracy (I=2217),
features of the spectra identical including the crossing of E,,,
over E,; around /=45. Clearly, both numerical simulations
have captured all significant motion scales (more than seven
decades in the ratio of energy contents between the local
maximum and the highest wavenumber) and exhibit
exponential decay of the high-wavenumber energy. The
local maximum of energy near [~ 23 corresponds to the
polar length-scale of the pinch, ie., about “0.9d” as seen
on Fig.3 (I~ (nR,)/(0.9d)). The pinch phenomenon is
apparent on both spectra due to the strong correlation
observed between the meridional circulation (¥) and the
azimuthal motion (£2). The extents and thicknesses of the
boundary layers associated with u,, are clearly shown on the
wy-contours of Fig. 3, which also provides an alternative
means to analyse the important critical points mentioned
above [22].

6.2. Three-Dimensional Flows

The purpose of our last validation test is to verify the
implementation for a three-dimensional computation. The
only fully described and quantitatively documented 3D flow
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in spherical-gaps is the narrow-gap spherical Couette flow
after its first transition. Nakabayashi reports in [4] his
thorough experimental investigation of that transition, and
among other flow regimes, he describes in detail one known
as the spiral Taylor—Gértler vortex flow (see also [34, 357).

We select our parameters to match one of Nakabayashi’s
laboratory c¢ases. The gap-width used is &=006
{R,=16.667, R,=17.667) with the boundary conditions
V:=1 and V,=0. The critical Reynolds number for that
gap, at which Taylor-Gértler vortices first appear, has been
determined by flow visualizations as Re,~ 166, in good
agreement with infinitely thih-gap theories and cylindrical
Couette flow. At Re=195, ie, Re/Re, ~ 1.17, the super-
critical flow is described by Nakabayashi as a periodic flow
exhibiting Taylor vortices whose axes are slightly tilted with
respect to the azimuthal direction, hence the appellation
“spiral vortices.” These vortices can be observed over a
~40°-region centered at the equator, and are traveiling in
the azimuthal direction at about 47% of 2, (ie., in that
rotating frame, the flow would nearly become steady).
Six spiral cells per hemisphere (three of each vorticity sign)
have been identified.

We choose for our test simulation the following trunca-
tions: N = 16, L = 84, and M =9 with a physical collocation
grid of 33x130x32 points. The required CPU-time
corresponding to this discretization is a quite bearable
12 CPU-s/timestep on a CRAY Y/MP processor. For an
actual detailed physical study, an increase of at least 50 % in
the spherical resolution should be considered based on the
fact that a length-scale of order “d” corresponds for this
geometry to a polar wavenumber {;~ R, /d=55.

The initial condition used for the simuiation was a pre-
viously computed subcritical basic solution at Re = 160 to
which some very small 3D random noise was added
(velocity disturbances less than 10~'° in amplitude).
Starting with a sudden drop in viscosity leading to Re = 195
at =07, the flow field was marched in time for about six
inner-sphere revolutions. At that time, the torque was found
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FIG. 5. Visualization of the numerical solution of a spiral
Taylor-Gértler vortex flow in a narrow sphertcal gap é =0.06 {enlarged
here 3.2 times) with V, =1, ¥,=0, and Re = 195. The radial velocity u, is
shown on a spherical shell at 0.3 gap-width from the inner sphere and on
the meridional plane ¢ =0. Nonzero velocity appears as dark bands
corresponding to radial inflow or outflow regions located in between
adjacent Taylor—Gartler vortices. Pale bands, for which u, ~ 0, correspond
to the centers of the vortices.

to be almost constant (¥ = 4.81 x 10* which agrees well with
narrow-gaps torque measurements by Wimmer [367), and
the flow had nearly reached a state of steady oscillations.
Qualitatively speaking, cur spiral-vortex flow is in
very good agreement with the experimental flow of
Nakabayashi. Figure 5 shows a numerically produced
visualization of the radial sources and sinks associated
respectively with the outflow and inflow boundaries
between the vortices, The thin pale bands correspond to the
axes of the Taylor—Gortler cells. The spiral character of
those cells is made clearly visible, and it can be measured

FIG. 6. Visualization of the azimuthal-vorticity field for the spiral-vortex flow of Fig. 5. From left to right, the sequence of colored-surface views
corresponds to an observer located at z=0 with respectively y = —0, x =00, y =0, and x = —o0. Dark shade is positive vorticity and pale gray is
negative. Note the spiral topology of the vortices as well as the interesting phenomenon of “vortex-branch™ (an example of which is indicated by the

arrowy,
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that the inclination-angle « with respect to the azimuthal
direction varies from nearly 0° at the equator to about 2.7°
farther away. This agrees very well with Nakabayashi’s
measurements given in Table 3 of {4]. The axes of the
Taylor-Gértler vortices being nearly aligned with the
azimuthal direction, the w, field should approximate well
- the actual vortex—cell boundaries. Figure 6 makes use of
that approximation and shows a revealing montage of four
perpendicular views of the equatorial region. It is easily seen
that the equator is no lenger a symmetry plane.

The number of spiral vortices agrees very well between
our numerical computation and Nakabayashi’s experiment.
In both cases, six spiral cells with three corresponding
“starting points” are found in each hemisphere, as can be
seen on the visualization. However, it is quite possible that
what Nakabayashi calls “starting points” are actually
“ending points” if one considers that the formation of
Taylor vortices takes place at the low-latitude edge of the
basic recirculation cells rather than near the equator
{18, 227 We thus prefer here to call those vortex-splitting
regions vortex-branches, an example of which is indicated by
the arrow on Fig. 6.

Other quantitative comparisons with the experimental
flow field have also led to surprisingly good agreements con-
sidering the marginal resolution of the present simulatien.
Among other things, the angular velocity of the spiral
vortices, £, was computed from the Fourier-transformed
velocity field at two consecutive times. From the phase shift
calculated, we obtain ,/Q2,=047. Nakabayashi reports a
measured value of 0466 at our Reynolds number. This
implies that the period of the flow is given by T=2r/Q2 =
2.14T; (T, being the inner-sphere period of revolution)

E{1) ——— & = 0.0b . Re = 193

ity

&

-7

Q 20 40 &0 80 100

Polar wavenumber "1
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which is consistent with all our computed, point-wise
velocity traces.

The energy spectra associated with our 3D spiral
Taylor-Gértler vortex flow are provided in Fig. 7. The
Legendre toral energy spectrum is defined as E(l)=
¥ E(l,m) and the Fourier total energy spectrum by
E(m)=Y, E(i, m), where the VSH discrete energy content
E(f, m) is computed in spectral space (from a velocity
representation such as Eq. (40)) as

R [Afm :":n+BIm ;.:n+CfmC;:n]r2dr
3 .

1
Em) = —| (47)

i

The Legendre spectrum E(/) clearly shows a strong local
maximum at /~ 63 corresponding to the length-scale 0.884
of the spiral vortices present in the flow. This spectrum
furthermore indicates that only two decades of decay in
energy content is obtained between the local maximum and
the tail of spectrum, thus supporting the previous allusion
to the marginal level of resolution of the computation. The
Fourier spectrum E(m) brings evidence that nine complex
modes were indeed sufficient, although marginally, to cap-
ture the global features in the azimuthal direction. The weak
local maximum at m =23 corresponds to the presence of
three pairs of spiral cells per hemisphere.

Figure 8 finally presents a comparison between the
meridional streamlines of the axisymmetric part of the
actual 3D spiral flow (Fourier mode “m=10") versus the
axisymmetrically computed flow (with M =0 and the same
discretization in the other two directions) for the same
geometry and the same Reynolds number. The latter is
found to be a slowly varying periodic flow that exhibits 8 to

- E{m) --- § = 0.06 , Re = 185
b
-2
. \\
55_4 N L\\
5 \\
-5 \\

-7
0 2 4 [ 8 10

Azimuthal wavenumber “m"

FIG. 7. Energy spectra of the spiral-vortex flow of Figs. 5-6: (a) Legendre-total-energy spectrum E(f); (b) Fourier-total-energy spectrum £(m). The
local maximum in E{/) at { = 63 cotresponds to a length-scale of about “0.94.,” i.e., the characteristic size of the Taylor-Gortler vortices.
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FIG. 8 Meridional strearnlines in the equatorial region for (a) the
axisymmetric part { Fourier mode “m=07") of the 3D vortex-flow solution
of Figs. 5-7, and for (b) the axisymmetric, time-periedic flow computed for
the same conditions (except with M = 0) and shown here at ¢ = 1800. The
widih of the gap is shown above to scale,

12 Taylor vortices in agreement with the axisymmetric com-
putations of Bartels {37]. It is illustrated here at a time just
after the disappearance of the two extreme vortex pairs, One
observes from Fig. 8a that no indication of clearly defined
axisymmetric vortices is visible in our 3D spiral flow. Thus
we see no evidence for the existence of a pair of toroidal
vortices at the equator as reported by Nakabayashi, It may
be possible that the inclination angle near the equator is
too small for reliable experimental determination by the
aluminum-flake method of visualization, or that some inter-
ference is present due to the fact that the experimental setup
has a support post for the inner sphere. A better resolved
numerical simulation may help clarify this point.

7. CONCLUSIONS

A spectral method based on divergence-free vector
expansions has been presented for the solution of the
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incompressible Navier-Stokes equations in spherical-gap
geometries. No rotational nor equatorial symmetry of the
flow field has been implicitly assumed. Chebyshev polyno-
mials are used to construct sets of quasi-orthogonal
functions in the radial direction while vector spherical
harmonics are chosen for the orthogonal vector functions in
the spherical directions. The method is thus characterized
by a resolution that is radially concentrated near the solid
walls and uniform over spherical shells. Tt offers the
following advantages: (i} spectral convergence; (ii) exact
treatment of the continuity eguation and boundary
conditions; (iii) pressure eliminated as an explicit variable;
(iv) only two degrees of freedom per spectral mode; (v)
simple and standard time-marching procedure; {vi) implicit
treatment of viscous term at no extra cost.

The efficient implementation of the initial-boundary-
value code is briefly discussed including the development of
a VSH-Chebyshev transform with two fast directions. Fully
spectral simulations are warranted by the removal of
aliasing errors through the “3/2 rule”

Test cases are presented to validate the method. Several
axisymmetric, basic spherical Couette flows are computed
and compared with available numerical results. A three-
dimensional, spiral Taylor-Gértler vortex flow is also com-
puted and compared with experimental measurements and
visualizations. In all cases, the agreement obtained is very
good. The method has since been used very successfully in
an ongoing study of the transition mechanisms in moderate
and in large-gap spherical Couette flows,

APPENDIX A: SPHERICAL HARMONICS

A.l. Scalar Spherical Harmonics
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See Appendix A of Dumas [ 18] for the explicit
of the real indexed coefficients a to r.
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definitions

Below, R(r) is an arbitrary function of r:
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APPENDIX B: SUMMARY OF SPATIAL DISCRETIZATION

Velocity Expansion (divergence-free)
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Semi-discrete Systems (two systems per couple “I, m”)
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i

n'n
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d:n = J' [h+Vg:-[V+h gnIW]r dr
R,

B = | LG8 + S 1 dr
R,

Foo=| gy rd

Ro
Fy = fR. L e+ ¥ e 3 dr

Ti7, V™ Eq. (36); A%E(sy: Eq. (35)
_d* 2d K+
4 = dr2+;a_ rr
+
hit(r) = [dh : h:];

()
o - (i) 52
i« ()" [45-1v1)

[+1\"2[dg® I+1
ATW - il - n IR B
& (1) I(Zl-}-l) [ dr + y :"

hy @)y = (1=E) T,08),
S Q) = (1=8)7r T8

i
g, (r(g)) = (—1—_?),7(1—52) T
1
g, (r(d)) = m(l—fz)zr T, (c)

(=2r—K & r=%(f§+K);

T.(&):  nth degree Chebyshev polynomial;
Xy Yim, Wit VSHsof degree [, order m.
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